题目:给定一个二叉搜索树(BST),找到树中第 K 小的节点。
出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家
参考答案:
- 考察点
- 基础数据结构的理解和编码能力
- 递归使用
- 示例
5
/ \
3 6
/ \
2 4
/
1
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
说明:保证输入的 K 满足 1<=K<=(节点数目)
解法1:树相关的题目,第一眼就想到递归求解,左右子树分别遍历。联想到二叉搜索树的性质,root 大于左子树,小于右子树,如果左子树的节点数目等于 K-1,那么 root 就是结果,否则如果左子树节点数目小于 K-1,那么结果必然在右子树,否则就在左子树。因此在搜索的时候同时返回节点数目,跟 K 做对比,就能得出结果了。
/**
* Definition for a binary tree node.
**/
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
class Solution {
private class ResultType {
boolean found; // 是否找到
int val; // 节点数目
ResultType(boolean found, int val) {
this.found = found;
this.val = val;
}
}
public int kthSmallest(TreeNode root, int k) {
return kthSmallestHelper(root, k).val;
}
private ResultType kthSmallestHelper(TreeNode root, int k) {
if (root == null) {
return new ResultType(false, 0);
}
ResultType left = kthSmallestHelper(root.left, k);
// 左子树找到,直接返回
if (left.found) {
return new ResultType(true, left.val);
}
// 左子树的节点数目 = K-1,结果为 root 的值
if (k - left.val == 1) {
return new ResultType(true, root.val);
}
// 右子树寻找
ResultType right = kthSmallestHelper(root.right, k - left.val - 1);
if (right.found) {
return new ResultType(true, right.val);
}
// 没找到,返回节点总数
return new ResultType(false, left.val + 1 + right.val);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
解法2:基于二叉搜索树的特性,在中序遍历的结果中,第k个元素就是本题的解。
最差的情况是k节点是bst的最右叶子节点,不过每个节点的遍历次数最多是1次
。
遍历并不是需要全部做完,使用计数的方式,找到第k个元素就可以退出。
下面是go的一个简单实现。
// BST is binary search tree
type BST struct {
key, value int
left, right *BST
}
func (bst *BST) setLeft(b *BST) {
bst.left = b
}
func (bst *BST) setRight(b *BST) {
bst.right = b
}
// count 查找bst第k个节点的值,未找到就返回0
func count(bst *BST, k int) int {
if k < 1 {
return 0
}
c := 0
ok, value := countRecursive(bst, &c, k)
if ok {
return value
}
return 0
}
// countRecurisive 对bst使用中序遍历
// 用计数方式控制退出遍历,参数c就是已遍历节点数
func countRecursive(bst *BST, c *int, k int) (bool, int) {
if bst.left != nil {
ok, value := countRecursive(bst.left, c, k)
if ok {
return ok, value
}
}
if *c == k-1 {
return true, bst.value
}
*c++
if bst.right != nil {
ok, value := countRecursive(bst.right, c, k)
if ok {
return ok, value
}
}
return false, 0
}
// 下面是测试代码,覆盖了退化的情况和普通bst
func createBST1() *BST {
b1 := &BST{key: 1, value: 10}
b2 := &BST{key: 2, value: 20}
b3 := &BST{key: 3, value: 30}
b4 := &BST{key: 4, value: 40}
b5 := &BST{key: 5, value: 50}
b6 := &BST{key: 6, value: 60}
b7 := &BST{key: 7, value: 70}
b8 := &BST{key: 8, value: 80}
b9 := &BST{key: 9, value: 90}
b9.setLeft(b8)
b8.setLeft(b7)
b7.setLeft(b6)
b6.setLeft(b5)
b5.setLeft(b4)
b4.setLeft(b3)
b3.setLeft(b2)
b2.setLeft(b1)
return b9
}
func createBST2() *BST {
b1 := &BST{key: 1, value: 10}
b2 := &BST{key: 2, value: 20}
b3 := &BST{key: 3, value: 30}
b4 := &BST{key: 4, value: 40}
b5 := &BST{key: 5, value: 50}
b6 := &BST{key: 6, value: 60}
b7 := &BST{key: 7, value: 70}
b8 := &BST{key: 8, value: 80}
b9 := &BST{key: 9, value: 90}
b1.setRight(b2)
b2.setRight(b3)
b3.setRight(b4)
b4.setRight(b5)
b5.setRight(b6)
b6.setRight(b7)
b7.setRight(b8)
b8.setRight(b9)
return b1
}
func createBST3() *BST {
b1 := &BST{key: 1, value: 10}
b2 := &BST{key: 2, value: 20}
b3 := &BST{key: 3, value: 30}
b4 := &BST{key: 4, value: 40}
b5 := &BST{key: 5, value: 50}
b6 := &BST{key: 6, value: 60}
b7 := &BST{key: 7, value: 70}
b8 := &BST{key: 8, value: 80}
b9 := &BST{key: 9, value: 90}
b5.setLeft(b3)
b5.setRight(b7)
b3.setLeft(b2)
b3.setRight(b4)
b2.setLeft(b1)
b7.setLeft(b6)
b7.setRight(b8)
b8.setRight(b9)
return b5
}
func createBST4() *BST {
b := &BST{key: 1, value: 10}
last := b
for i := 2; i < 100000; i++ {
n := &BST{key: i, value: i * 10}
last.setRight(n)
last = n
}
return b
}
func createBST5() *BST {
b := &BST{key: 99999, value: 999990}
last := b
for i := 99998; i > 0; i-- {
n := &BST{key: i, value: i * 10}
last.setLeft(n)
last = n
}
return b
}
func createBST6() *BST {
b := &BST{key: 50000, value: 500000}
last := b
for i := 49999; i > 0; i-- {
n := &BST{key: i, value: i * 10}
last.setLeft(n)
last = n
}
last = b
for i := 50001; i < 100000; i++ {
n := &BST{key: i, value: i * 10}
last.setRight(n)
last = n
}
return b
}
func TestK(t *testing.T) {
bst1 := createBST1()
bst2 := createBST2()
bst3 := createBST3()
bst4 := createBST4()
check(t, bst1, 1, 10)
check(t, bst1, 2, 20)
check(t, bst1, 3, 30)
check(t, bst1, 4, 40)
check(t, bst1, 5, 50)
check(t, bst1, 6, 60)
check(t, bst1, 7, 70)
check(t, bst1, 8, 80)
check(t, bst1, 9, 90)
check(t, bst2, 1, 10)
check(t, bst2, 2, 20)
check(t, bst2, 3, 30)
check(t, bst2, 4, 40)
check(t, bst2, 5, 50)
check(t, bst2, 6, 60)
check(t, bst2, 7, 70)
check(t, bst2, 8, 80)
check(t, bst2, 9, 90)
check(t, bst3, 1, 10)
check(t, bst3, 2, 20)
check(t, bst3, 3, 30)
check(t, bst3, 4, 40)
check(t, bst3, 5, 50)
check(t, bst3, 6, 60)
check(t, bst3, 7, 70)
check(t, bst3, 8, 80)
check(t, bst3, 9, 90)
check(t, bst4, 1, 10)
check(t, bst4, 2, 20)
check(t, bst4, 3, 30)
check(t, bst4, 4, 40)
check(t, bst4, 5, 50)
check(t, bst4, 6, 60)
check(t, bst4, 7, 70)
check(t, bst4, 8, 80)
check(t, bst4, 9, 90)
check(t, bst4, 99991, 999910)
check(t, bst4, 99992, 999920)
check(t, bst4, 99993, 999930)
check(t, bst4, 99994, 999940)
check(t, bst4, 99995, 999950)
check(t, bst4, 99996, 999960)
check(t, bst4, 99997, 999970)
check(t, bst4, 99998, 999980)
check(t, bst4, 99999, 999990)
}
func check(t *testing.T, b *BST, k, value int) {
t.Helper()
checkCall(t, b, k, value, count)
// 此处可添加其他解法的实现
}
func checkCall(t *testing.T, b *BST, k, value int, find func(bst *BST, kth int) int) {
t.Helper()
got := find(b, k)
if got != value {
t.Fatalf("want:%d, got:%d", value, got)
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250