扫码订阅《 Go Redis 终极宝典》或入驻星球,即可阅读文章!

GOLANG ROADMAP

阅读模式

  • 沉浸
  • 自动
  • 日常
首页
Go学习
  • Go学院

    • Go小课
    • Go小考
    • Go实战
    • 精品课
  • Go宝典

    • 在线宝典
    • B站精选
    • 推荐图书
    • 精品博文
  • Go开源

    • Go仓库
    • Go月刊
  • Go下载

    • 视频资源
    • 文档资源
Go求职
  • 求职服务

    • 内推互助
    • 求职助力
  • 求职刷题

    • 企业题库
    • 面试宝典
    • 求职面经
Go友会
  • 城市
  • 校园
推广返利 🤑
实验区
  • Go周边
消息
更多
  • 用户中心

    • 我的信息
    • 推广返利
  • 玩转星球

    • 星球介绍
    • 角色体系
    • 星主权益
  • 支持与服务

    • 联系星主
    • 成长记录
    • 常见问题
    • 吐槽专区
  • 合作交流

    • 渠道合作
    • 课程入驻
    • 友情链接
author-avatar

GOLANG ROADMAP


首页
Go学习
  • Go学院

    • Go小课
    • Go小考
    • Go实战
    • 精品课
  • Go宝典

    • 在线宝典
    • B站精选
    • 推荐图书
    • 精品博文
  • Go开源

    • Go仓库
    • Go月刊
  • Go下载

    • 视频资源
    • 文档资源
Go求职
  • 求职服务

    • 内推互助
    • 求职助力
  • 求职刷题

    • 企业题库
    • 面试宝典
    • 求职面经
Go友会
  • 城市
  • 校园
推广返利 🤑
实验区
  • Go周边
消息
更多
  • 用户中心

    • 我的信息
    • 推广返利
  • 玩转星球

    • 星球介绍
    • 角色体系
    • 星主权益
  • 支持与服务

    • 联系星主
    • 成长记录
    • 常见问题
    • 吐槽专区
  • 合作交流

    • 渠道合作
    • 课程入驻
    • 友情链接
  • Go语言Redis终极宝典

    • 课程导读
  • 使用示例

  • 常见问题

    • 简单介绍下Redis
    • 分布式缓存常见的技术选型方案有哪些?
    • 说一下 Redis 和 Memcached 的区别和共同点
    • 缓存数据的处理流程是怎样的?
    • 为什么要用 Redis/为什么要用缓存?
    • Redis 常见数据结构以及使用场景分析
    • Redis 单线程模型详解
    • Redis 没有使用多线程?为什么不使用多线程?
    • Redis6.0 之后为何引入了多线程?
    • Redis 给缓存数据设置过期时间有啥用?
    • Redis是如何判断数据是否过期的呢?
    • 过期的数据的删除策略了解么?
    • Redis 内存淘汰机制了解么?
    • Redis 持久化机制(怎么保证 Redis 挂掉之后再重启数据可以进行恢复)
    • Redis 事务
    • 缓存穿透
    • 缓存雪崩
    • 如何保证缓存和数据库数据的一致性?

扫码订阅《 Go Redis 终极宝典》或入驻星球,即可阅读文章!

缓存穿透


GOLANG ROADMAP

# 什么是缓存穿透?

缓存穿透说简单点就是大量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这一层。举个例子:某个黑客故意制造我们缓存中不存在的 key 发起大量请求,导致大量请求落到数据库。

# 缓存穿透情况的处理流程是怎样的?

如下图所示,用户的请求最终都要跑到数据库中查询一遍。

# 有哪些解决办法?

最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。

1)缓存无效 key

如果缓存和数据库都查不到某个 key 的数据就写一个到 Redis 中去并设置过期时间,具体命令如下: SET key value EX 10086 。这种方式可以解决请求的 key 变化不频繁的情况,如果黑客恶意攻击,每次构建不同的请求 key,会导致 Redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。

另外,这里多说一嘴,一般情况下我们是这样设计 key 的: 表名:列名:主键名:主键值 。

2)布隆过滤器

布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在于海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。

具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。

加入布隆过滤器之后的缓存处理流程图如下。

但是,需要注意的是布隆过滤器可能会存在误判的情况。总结来说就是: 布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不在,那么这个元素一定不在。

为什么会出现误判的情况呢? 我们还要从布隆过滤器的原理来说!

我们先来看一下,当一个元素加入布隆过滤器中的时候,会进行哪些操作:

  1. 使用布隆过滤器中的哈希函数对元素值进行计算,得到哈希值(有几个哈希函数得到几个哈希值)。
  2. 根据得到的哈希值,在位数组中把对应下标的值置为 1。

我们再来看一下,当我们需要判断一个元素是否存在于布隆过滤器的时候,会进行哪些操作:

  1. 对给定元素再次进行相同的哈希计算;
  2. 得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。

然后,一定会出现这样一种情况:不同的字符串可能哈希出来的位置相同。 (可以适当增加位数组大小或者调整我们的哈希函数来降低概率)

  • 什么是缓存穿透?
  • 缓存穿透情况的处理流程是怎样的?