# 1.1 内存管理
# 1.1.1【必须】切片长度校验
- 在对slice进行操作时,必须判断长度是否合法,防止程序panic
// bad: 未判断data的长度,可导致 index out of range
func decode(data [] byte) bool {
if data[0] == 'F' && data[1] == 'U' && data[2] == 'Z' && data[3] == 'Z' && data[4] == 'E' && data[5] == 'R' {
fmt.Println("Bad")
return true
}
return false
}
// bad: slice bounds out of range
func foo() {
var slice = []int{0, 1, 2, 3, 4, 5, 6}
fmt.Println(slice[:10])
}
// good: 使用data前应判断长度是否合法
func decode(data [] byte) bool {
if len(data) == 6 {
if data[0] == 'F' && data[1] == 'U' && data[2] == 'Z' && data[3] == 'Z' && data[4] == 'E' && data[5] == 'R' {
fmt.Println("Good")
return true
}
}
return false
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# 1.1.2【必须】nil指针判断
- 进行指针操作时,必须判断该指针是否为nil,防止程序panic,尤其在进行结构体Unmarshal时
type Packet struct {
PackeyType uint8
PackeyVersion uint8
Data *Data
}
type Data struct {
Stat uint8
Len uint8
Buf [8]byte
}
func (p *Packet) UnmarshalBinary(b []byte) error {
if len(b) < 2 {
return io.EOF
}
p.PackeyType = b[0]
p.PackeyVersion = b[1]
// 若长度等于2,那么不会new Data
if len(b) > 2 {
p.Data = new(Data)
// Unmarshal(b[i:], p.Data)
}
return nil
}
// bad: 未判断指针是否为nil
func main() {
packet := new(Packet)
data := make([]byte, 2)
if err := packet.UnmarshalBinary(data); err != nil {
fmt.Println("Failed to unmarshal packet")
return
}
fmt.Printf("Stat: %v\n", packet.Data.Stat)
}
// good: 判断Data指针是否未nil
func main() {
packet := new(Packet)
data := make([]byte, 2)
if err := packet.UnmarshalBinary(data); err != nil {
fmt.Println("Failed to unmarshal packet")
return
}
if packet.Data == nil {
return
}
fmt.Printf("Stat: %v\n", packet.Data.Stat)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
1.1.3【必须】整数安全
在进行数字运算操作时,需要做好长度限制,防止外部输入运算导致异常:
- 确保无符号整数运算时不会反转
- 确保有符号整数运算时不会出现溢出
- 确保整型转换时不会出现截断错误
- 确保整型转换时不会出现符号错误
以下场景必须严格进行长度限制:
- 作为数组索引
- 作为对象的长度或者大小
- 作为数组的边界(如作为循环计数器)
// bad: 未限制长度,导致整数溢出
func overflow(numControlByUser int32) {
var numInt int32 = 0
numInt = numControlByUser + 1
//对长度限制不当,导致整数溢出
fmt.Printf("%d\n", numInt)
//使用numInt,可能导致其他错误
}
func main() {
overflow(2147483647)
}
// good:
func overflow(numControlByUser int32) {
var numInt int32 = 0
numInt = numControlByUser + 1
if numInt < 0 {
fmt.Println("integer overflow")
return;
}
fmt.Println("integer ok")
}
func main() {
overflow(2147483647)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# 1.1.4【必须】make分配长度验证
- 在进行make分配内存时,需要对外部可控的长度进行校验,防止程序panic。
// bad
func parse(lenControlByUser int, data[] byte) {
size := lenControlByUser
//对外部传入的size,进行长度判断以免导致panic
buffer := make([]byte, size)
copy(buffer, data)
}
// good
func parse(lenControlByUser int, data[] byte) ([]byte, error){
size := lenControlByUser
//限制外部可控的长度大小范围
if size > 64*1024*1024 {
return nil, errors.New("value too large")
}
buffer := make([]byte, size)
copy(buffer, data)
return buffer, nil
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 1.1.5【必须】禁止SetFinalizer和指针循环引用同时使用
- 当一个对象从被GC选中到移除内存之前,runtime.SetFinalizer()都不会执行,即使程序正常结束或者发生错误。由指针构成的“循环引用”虽然能被GC正确处理,但由于无法确定Finalizer依赖顺序,从而无法调用runtime.SetFinalizer(),导致目标对象无法变成可达状态,从而造成内存无法被回收。
// bad
func foo() {
var a, b Data
a.o = &b
b.o = &a
//指针循环引用,SetFinalizer()无法正常调用
runtime.SetFinalizer(&a, func(d *Data) {
fmt.Printf("a %p final.\n", d)
})
runtime.SetFinalizer(&b, func(d *Data) {
fmt.Printf("b %p final.\n", d)
})
}
func main() {
for {
foo()
time.Sleep(time.Millisecond)
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 1.1.6【必须】禁止重复释放channel
- 重复释放一般存在于异常流程判断中,如果恶意攻击者构造出异常条件使程序重复释放channel,则会触发运行时恐慌,从而造成DoS攻击。
// bad
func foo(c chan int) {
defer close(c)
err := processBusiness()
if err != nil {
c <- 0
close(c) // 重复释放channel
return
}
c <- 1
}
// good
func foo(c chan int) {
defer close(c) // 使用defer延迟关闭channel
err := processBusiness()
if err != nil {
c <- 0
return
}
c <- 1
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# 1.1.7【必须】确保每个协程都能退出
- 启动一个协程就会做一个入栈操作,在系统不退出的情况下,协程也没有设置退出条件,则相当于协程失去了控制,它占用的资源无法回收,可能会导致内存泄露。
// bad: 协程没有设置退出条件
func doWaiter(name string, second int) {
for {
time.Sleep(time.Duration(second) * time.Second)
fmt.Println(name, " is ready!")
}
}
1
2
3
4
5
6
7
2
3
4
5
6
7
# 1.1.8【推荐】不使用unsafe包
- 由于unsafe包绕过了 Golang 的内存安全原则,一般来说使用该库是不安全的,可导致内存破坏,尽量避免使用该包。若必须要使用unsafe操作指针,必须做好安全校验。
// bad: 通过unsafe操作原始指针
func unsafePointer() {
b := make([]byte, 1)
foo := (*int)(unsafe.Pointer(uintptr(unsafe.Pointer(&b[0])) + uintptr(0xfffffffe)))
fmt.Print(*foo + 1)
}
// [signal SIGSEGV: segmentation violation code=0x1 addr=0xc100068f55 pc=0x49142b]
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# 1.1.9【推荐】不使用slice作为函数入参
- slice是引用类型,在作为函数入参时采用的是地址传递,对slice的修改也会影响原始数据
// bad
// slice作为函数入参时是地址传递
func modify(array []int) {
array[0] = 10 // 对入参slice的元素修改会影响原始数据
}
func main() {
array := []int{1, 2, 3, 4, 5}
modify(array)
fmt.Println(array) // output:[10 2 3 4 5]
}
// good
// 数组作为函数入参时,而不是slice
func modify(array [5]int) {
array[0] = 10
}
func main() {
// 传入数组,注意数组与slice的区别
array := [5]int{1, 2, 3, 4, 5}
modify(array)
fmt.Println(array)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# 1.2 文件操作
# 1.2.1【必须】 路径穿越检查
- 在进行文件操作时,如果对外部传入的文件名未做限制,可能导致任意文件读取或者任意文件写入,严重可能导致代码执行。
// bad: 任意文件读取
func handler(w http.ResponseWriter, r *http.Request) {
path := r.URL.Query()["path"][0]
// 未过滤文件路径,可能导致任意文件读取
data, _ := ioutil.ReadFile(path)
w.Write(data)
// 对外部传入的文件名变量,还需要验证是否存在../等路径穿越的文件名
data, _ = ioutil.ReadFile(filepath.Join("/home/user/", path))
w.Write(data)
}
// bad: 任意文件写入
func unzip(f string) {
r, _ := zip.OpenReader(f)
for _, f := range r.File {
p, _ := filepath.Abs(f.Name)
// 未验证压缩文件名,可能导致../等路径穿越,任意文件路径写入
ioutil.WriteFile(p, []byte("present"), 0640)
}
}
// good: 检查压缩的文件名是否包含..路径穿越特征字符,防止任意写入
func unzipGood(f string) bool {
r, err := zip.OpenReader(f)
if err != nil {
fmt.Println("read zip file fail")
return false
}
for _, f := range r.File {
p, _ := filepath.Abs(f.Name)
if !strings.Contains(p, "..") {
ioutil.WriteFile(p, []byte("present"), 0640)
}
}
return true
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# 1.2.2【必须】 文件访问权限
- 根据创建文件的敏感性设置不同级别的访问权限,以防止敏感数据被任意权限用户读取。例如,设置文件权限为:
-rw-r-----
ioutil.WriteFile(p, []byte("present"), 0640)
1
# 1.3 系统接口
# 1.3.1【必须】命令执行检查
- 使用
exec.Command
、exec.CommandContext
、syscall.StartProcess
、os.StartProcess
等函数时,第一个参数(path)直接取外部输入值时,应使用白名单限定可执行的命令范围,不允许传入bash
、cmd
、sh
等命令; - 使用
exec.Command
、exec.CommandContext
等函数时,通过bash
、cmd
、sh
等创建shell,-c后的参数(arg)拼接外部输入,应过滤\n $ & ; | ' " ( ) `等潜在恶意字符;
// bad
func foo() {
userInputedVal := "&& echo 'hello'" // 假设外部传入该变量值
cmdName := "ping " + userInputedVal
//未判断外部输入是否存在命令注入字符,结合sh可造成命令注入
cmd := exec.Command("sh", "-c", cmdName)
output, _ := cmd.CombinedOutput()
fmt.Println(string(output))
cmdName := "ls"
//未判断外部输入是否是预期命令
cmd := exec.Command(cmdName)
output, _ := cmd.CombinedOutput()
fmt.Println(string(output))
}
// good
func checkIllegal(cmdName string) bool {
if strings.Contains(cmdName, "&") || strings.Contains(cmdName, "|") || strings.Contains(cmdName, ";") ||
strings.Contains(cmdName, "$") || strings.Contains(cmdName, "'") || strings.Contains(cmdName, "`") ||
strings.Contains(cmdName, "(") || strings.Contains(cmdName, ")") || strings.Contains(cmdName, "\"") {
return true
}
return false
}
func main() {
userInputedVal := "&& echo 'hello'"
cmdName := "ping " + userInputedVal
if checkIllegal(cmdName) { // 检查传给sh的命令是否有特殊字符
return // 存在特殊字符直接return
}
cmd := exec.Command("sh", "-c", cmdName)
output, _ := cmd.CombinedOutput()
fmt.Println(string(output))
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# 1.4 通信安全
# 1.4.1【必须】网络通信采用TLS方式
- 明文传输的通信协议目前已被验证存在较大安全风险,被中间人劫持后可能导致许多安全风险,因此必须采用至少TLS的安全通信方式保证通信安全,例如gRPC/Websocket都使用TLS1.3。
// good
func main() {
http.HandleFunc("/", func (w http.ResponseWriter, req *http.Request) {
w.Header().Add("Strict-Transport-Security", "max-age=63072000; includeSubDomains")
w.Write([]byte("This is an example server.\n"))
})
//服务器配置证书与私钥
log.Fatal(http.ListenAndServeTLS(":443", "yourCert.pem", "yourKey.pem", nil))
}
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
# 1.4.2【推荐】TLS启用证书验证
- TLS证书应当是有效的、未过期的,且配置正确的域名,生产环境的服务端应启用证书验证。
// bad
import (
"crypto/tls"
"net/http"
)
func doAuthReq(authReq *http.Request) *http.Response {
tr := &http.Transport{
TLSClientConfig: &tls.Config{InsecureSkipVerify: true},
}
client := &http.Client{Transport: tr}
res, _ := client.Do(authReq)
return res
}
// good
import (
"crypto/tls"
"net/http"
)
func doAuthReq(authReq *http.Request) *http.Response {
tr := &http.Transport{
TLSClientConfig: &tls.Config{InsecureSkipVerify: false},
}
client := &http.Client{Transport: tr}
res, _ := client.Do(authReq)
return res
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# 1.5 敏感数据保护
# 1.5.1【必须】敏感信息访问
- 禁止将敏感信息硬编码在程序中,既可能会将敏感信息暴露给攻击者,也会增加代码管理和维护的难度
- 使用配置中心系统统一托管密钥等敏感信息
# 1.5.2【必须】敏感数据输出
- 只输出必要的最小数据集,避免多余字段暴露引起敏感信息泄露
- 不能在日志保存密码(包括明文密码和密文密码)、密钥和其它敏感信息
- 对于必须输出的敏感信息,必须进行合理脱敏展示
// bad
func serve() {
http.HandleFunc("/register", func(w http.ResponseWriter, r *http.Request) {
r.ParseForm()
user := r.Form.Get("user")
pw := r.Form.Get("password")
log.Printf("Registering new user %s with password %s.\n", user, pw)
})
http.ListenAndServe(":80", nil)
}
// good
func serve1() {
http.HandleFunc("/register", func(w http.ResponseWriter, r *http.Request) {
r.ParseForm()
user := r.Form.Get("user")
pw := r.Form.Get("password")
log.Printf("Registering new user %s.\n", user)
// ...
use(pw)
})
http.ListenAndServe(":80", nil)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
- 避免通过GET方法、代码注释、自动填充、缓存等方式泄露敏感信息
# 1.5.3【必须】敏感数据存储
- 敏感数据应使用SHA2、RSA等算法进行加密存储
- 敏感数据应使用独立的存储层,并在访问层开启访问控制
- 包含敏感信息的临时文件或缓存一旦不再需要应立刻删除
# 1.5.4【必须】异常处理和日志记录
- 应合理使用panic、recover、defer处理系统异常,避免出错信息输出到前端
defer func () {
if r := recover(); r != nil {
fmt.Println("Recovered in start()")
}
}()
1
2
3
4
5
2
3
4
5
- 对外环境禁止开启debug模式,或将程序运行日志输出到前端
错误例子:
dlv --listen=:2345 --headless=true --api-version=2 debug test.go
1
正确例子:
dlv debug test.go
1
# 1.6 加密解密
# 1.6.1【必须】不得硬编码密码/密钥
- 在进行用户登陆,加解密算法等操作时,不得在代码里硬编码密钥或密码,可通过变换算法或者配置等方式设置密码或者密钥。
// bad
const (
user = "dbuser"
password = "s3cretp4ssword"
)
func connect() *sql.DB {
connStr := fmt.Sprintf("postgres://%s:%s@localhost/pqgotest", user, password)
db, err := sql.Open("postgres", connStr)
if err != nil {
return nil
}
return db
}
// bad
var (
commonkey = []byte("0123456789abcdef")
)
func AesEncrypt(plaintext string) (string, error) {
block, err := aes.NewCipher(commonkey)
if err != nil {
return "", err
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# 1.6.2【必须】密钥存储安全
- 在使用对称密码算法时,需要保护好加密密钥。当算法涉及敏感、业务数据时,可通过非对称算法协商加密密钥。其他较为不敏感的数据加密,可以通过变换算法等方式保护密钥。
# 1.6.3【推荐】不使用弱密码算法
- 在使用加密算法时,不建议使用加密强度较弱的算法。
错误例子:
crypto/des,crypto/md5,crypto/sha1,crypto/rc4等。
1
# 1.7 正则表达式
# 1.7.1【推荐】使用regexp进行正则表达式匹配
- 正则表达式编写不恰当可被用于DoS攻击,造成服务不可用,推荐使用regexp包进行正则表达式匹配。regexp保证了线性时间性能和优雅的失败:对解析器、编译器和执行引擎都进行了内存限制。但regexp不支持以下正则表达式特性,如业务依赖这些特性,则regexp不适合使用。
// good
matched, err := regexp.MatchString(`a.b`, "aaxbb")
fmt.Println(matched) // true
fmt.Println(err) // nil (regexp is valid)
1
2
3
4
2
3
4
- 1.1 内存管理
- 1.1.1【必须】切片长度校验
- 1.1.2【必须】nil指针判断
- 1.1.4【必须】make分配长度验证
- 1.1.5【必须】禁止SetFinalizer和指针循环引用同时使用
- 1.1.6【必须】禁止重复释放channel
- 1.1.7【必须】确保每个协程都能退出
- 1.1.8【推荐】不使用unsafe包
- 1.1.9【推荐】不使用slice作为函数入参
- 1.2 文件操作
- 1.2.1【必须】 路径穿越检查
- 1.2.2【必须】 文件访问权限
- 1.3 系统接口
- 1.3.1【必须】命令执行检查
- 1.4 通信安全
- 1.4.1【必须】网络通信采用TLS方式
- 1.4.2【推荐】TLS启用证书验证
- 1.5 敏感数据保护
- 1.5.1【必须】敏感信息访问
- 1.5.2【必须】敏感数据输出
- 1.5.3【必须】敏感数据存储
- 1.5.4【必须】异常处理和日志记录
- 1.6 加密解密
- 1.6.1【必须】不得硬编码密码/密钥
- 1.6.2【必须】密钥存储安全
- 1.6.3【推荐】不使用弱密码算法
- 1.7 正则表达式
- 1.7.1【推荐】使用regexp进行正则表达式匹配