扫码订阅《 》或入驻星球,即可阅读文章!

GOLANG ROADMAP

阅读模式

  • 沉浸
  • 自动
  • 日常
首页
Go学习
  • Go学院

    • Go小课
    • Go视界
    • Go小考
    • Go实战
  • Go资源

    • 优质课程
    • 在线宝典
    • 资源下载
    • 帮找资源
训练营 🔥
  • Go体系课&实战训练营
  • 升值加薪陪跑训练营
Go求职
  • 求职刷题

    • 企业题库
    • 面试宝典
    • 求职面经
  • 求职服务

    • 内推互助
    • 求职助力
    • 内推公司
Go友会
  • 城市
  • 校园
推广返佣
  • 返佣排行
  • 返佣规则
  • 推广学院
实验区
  • Go周边
  • Go宝典

    • 推荐图书
    • 精品博文
  • Go开源

    • Go仓库
    • Go月刊
更多
  • 用户中心

    • 我的信息
    • 我的返佣
    • 我的消息
  • 玩转星球

    • 星球介绍
    • 星主权益
    • 吐槽专区
    • 成长记录
  • 合作交流

    • 商务合作
    • 讲师招募
    • 生态伙伴
author-avatar

GOLANG ROADMAP


首页
Go学习
  • Go学院

    • Go小课
    • Go视界
    • Go小考
    • Go实战
  • Go资源

    • 优质课程
    • 在线宝典
    • 资源下载
    • 帮找资源
训练营 🔥
  • Go体系课&实战训练营
  • 升值加薪陪跑训练营
Go求职
  • 求职刷题

    • 企业题库
    • 面试宝典
    • 求职面经
  • 求职服务

    • 内推互助
    • 求职助力
    • 内推公司
Go友会
  • 城市
  • 校园
推广返佣
  • 返佣排行
  • 返佣规则
  • 推广学院
实验区
  • Go周边
  • Go宝典

    • 推荐图书
    • 精品博文
  • Go开源

    • Go仓库
    • Go月刊
更多
  • 用户中心

    • 我的信息
    • 我的返佣
    • 我的消息
  • 玩转星球

    • 星球介绍
    • 星主权益
    • 吐槽专区
    • 成长记录
  • 合作交流

    • 商务合作
    • 讲师招募
    • 生态伙伴
  • 宝典简介

    • Go语言问题集
  • channel

  • map

  • interface

    • Go 语言与鸭子类型的关系
    • 值接收者和指针接收者的区别
    • iface 和 eface 的区别是什么
    • 接口的动态类型和动态值
    • 编译器自动检测类型是否实现接口
    • 接口的构造过程是怎样的
    • 类型转换和断言的区别
    • 接口转换的原理
    • 如何用 interface 实现多态
    • Go 接口与 C++ 接口有何异同
  • 标准库-context

  • 标准库-unsafe

  • goroutine调度器

  • 编译和链接

  • 反射

  • 数组和切片

  • GC的认识

扫码订阅《 》或入驻星球,即可阅读文章!

类型转换和断言的区别


qcrao

我们知道,Go 语言中不允许隐式类型转换,也就是说 = 两边,不允许出现类型不相同的变量。

类型转换、类型断言本质都是把一个类型转换成另外一个类型。不同之处在于,类型断言是对接口变量进行的操作。

# 类型转换

对于类型转换而言,转换前后的两个类型要相互兼容才行。类型转换的语法为:

<结果类型> := <目标类型> ( <表达式> )

package main

import "fmt"

func main() {
	var i int = 9

	var f float64
	f = float64(i)
	fmt.Printf("%T, %v\n", f, f)

	f = 10.8
	a := int(f)
	fmt.Printf("%T, %v\n", a, a)

	// s := []int(i)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

上面的代码里,我定义了一个 int 型和 float64 型的变量,尝试在它们之前相互转换,结果是成功的:int 型和 float64 是相互兼容的。

如果我把最后一行代码的注释去掉,编译器会报告类型不兼容的错误:

cannot convert i (type int) to type []int
1

# 断言

前面说过,因为空接口 interface{} 没有定义任何函数,因此 Go 中所有类型都实现了空接口。当一个函数的形参是 interface{},那么在函数中,需要对形参进行断言,从而得到它的真实类型。

断言的语法为:

<目标类型的值>,<布尔参数> := <表达式>.( 目标类型 ) // 安全类型断言 <目标类型的值> := <表达式>.( 目标类型 )  //非安全类型断言

类型转换和类型断言有些相似,不同之处,在于类型断言是对接口进行的操作。

还是来看一个简短的例子:

package main

import "fmt"

type Student struct {
	Name string
	Age int
}

func main() {
	var i interface{} = new(Student)
	s := i.(Student)
	
	fmt.Println(s)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

运行一下:

panic: interface conversion: interface {} is *main.Student, not main.Student
1

直接 panic 了,这是因为 i 是 *Student 类型,并非 Student 类型,断言失败。这里直接发生了 panic,线上代码可能并不适合这样做,可以采用“安全断言”的语法:

func main() {
	var i interface{} = new(Student)
	s, ok := i.(Student)
	if ok {
		fmt.Println(s)
	}
}
1
2
3
4
5
6
7

这样,即使断言失败也不会 panic。

断言其实还有另一种形式,就是用在利用 switch 语句判断接口的类型。每一个 case 会被顺序地考虑。当命中一个 case 时,就会执行 case 中的语句,因此 case 语句的顺序是很重要的,因为很有可能会有多个 case 匹配的情况。

代码示例如下:

func main() {
	//var i interface{} = new(Student)
	//var i interface{} = (*Student)(nil)
	var i interface{}

	fmt.Printf("%p %v\n", &i, i)

	judge(i)
}

func judge(v interface{}) {
	fmt.Printf("%p %v\n", &v, v)

	switch v := v.(type) {
	case nil:
		fmt.Printf("%p %v\n", &v, v)
		fmt.Printf("nil type[%T] %v\n", v, v)

	case Student:
		fmt.Printf("%p %v\n", &v, v)
		fmt.Printf("Student type[%T] %v\n", v, v)

	case *Student:
		fmt.Printf("%p %v\n", &v, v)
		fmt.Printf("*Student type[%T] %v\n", v, v)

	default:
		fmt.Printf("%p %v\n", &v, v)
		fmt.Printf("unknow\n")
	}
}

type Student struct {
	Name string
	Age int
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

main 函数里有三行不同的声明,每次运行一行,注释另外两行,得到三组运行结果:

// --- var i interface{} = new(Student)
0xc4200701b0 [Name: ], [Age: 0]
0xc4200701d0 [Name: ], [Age: 0]
0xc420080020 [Name: ], [Age: 0]
*Student type[*main.Student] [Name: ], [Age: 0]

// --- var i interface{} = (*Student)(nil)
0xc42000e1d0 <nil>
0xc42000e1f0 <nil>
0xc42000c030 <nil>
*Student type[*main.Student] <nil>

// --- var i interface{}
0xc42000e1d0 <nil>
0xc42000e1e0 <nil>
0xc42000e1f0 <nil>
nil type[<nil>] <nil>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

对于第一行语句:

var i interface{} = new(Student)
1

i 是一个 *Student 类型,匹配上第三个 case,从打印的三个地址来看,这三处的变量实际上都是不一样的。在 main 函数里有一个局部变量 i;调用函数时,实际上是复制了一份参数,因此函数里又有一个变量 v,它是 i 的拷贝;断言之后,又生成了一份新的拷贝。所以最终打印的三个变量的地址都不一样。

对于第二行语句:

var i interface{} = (*Student)(nil)
1

这里想说明的其实是 i 在这里动态类型是 (*Student), 数据为 nil,它的类型并不是 nil,它与 nil 作比较的时候,得到的结果也是 false。

最后一行语句:

var i interface{}
1

这回 i 才是 nil 类型。

【引申1】 fmt.Println 函数的参数是 interface。对于内置类型,函数内部会用穷举法,得出它的真实类型,然后转换为字符串打印。而对于自定义类型,首先确定该类型是否实现了 String() 方法,如果实现了,则直接打印输出 String() 方法的结果;否则,会通过反射来遍历对象的成员进行打印。

再来看一个简短的例子,比较简单,不要紧张:

package main

import "fmt"

type Student struct {
	Name string
	Age int
}

func main() {
	var s = Student{
		Name: "qcrao",
		Age: 18,
	}

	fmt.Println(s)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

因为 Student 结构体没有实现 String() 方法,所以 fmt.Println 会利用反射挨个打印成员变量:

{qcrao 18}
1

增加一个 String() 方法的实现:

func (s Student) String() string {
	return fmt.Sprintf("[Name: %s], [Age: %d]", s.Name, s.Age)
}
1
2
3

打印结果:

[Name: qcrao], [Age: 18]
1

按照我们自定义的方法来打印了。

【引申2】 针对上面的例子,如果改一下:

func (s *Student) String() string {
	return fmt.Sprintf("[Name: %s], [Age: %d]", s.Name, s.Age)
}
1
2
3

注意看两个函数的接受者类型不同,现在 Student 结构体只有一个接受者类型为 指针类型 的 String() 函数,打印结果:

{qcrao 18}
1

为什么?

类型 T 只有接受者是 T 的方法;而类型 *T 拥有接受者是 T 和 *T 的方法。语法上 T 能直接调 *T 的方法仅仅是 Go 的语法糖。

所以, Student 结构体定义了接受者类型是值类型的 String() 方法时,通过

fmt.Println(s)
fmt.Println(&s)
1
2

均可以按照自定义的格式来打印。

如果 Student 结构体定义了接受者类型是指针类型的 String() 方法时,只有通过

fmt.Println(&s)
1

才能按照自定义的格式打印。

# 参考资料

【类型转换和断言】https://www.cnblogs.com/zrtqsk/p/4157350.html

【断言】https://studygolang.com/articles/11419