扫码订阅《 》或入驻星球,即可阅读文章!

GOLANG ROADMAP

阅读模式

  • 沉浸
  • 自动
  • 日常
首页
Go学习
  • Go学院

    • Go小课
    • Go小考
    • Go实战
    • 精品课
  • Go宝典

    • 在线宝典
    • B站精选
    • 推荐图书
    • 精品博文
  • Go开源

    • Go仓库
    • Go月刊
  • Go下载

    • 视频资源
    • 文档资源
Go求职
  • 求职服务

    • 内推互助
    • 求职助力
  • 求职刷题

    • 企业题库
    • 面试宝典
    • 求职面经
Go友会
  • 城市
  • 校园
推广返利 🤑
实验区
  • Go周边
消息
更多
  • 用户中心

    • 我的信息
    • 推广返利
  • 玩转星球

    • 星球介绍
    • 角色体系
    • 星主权益
  • 支持与服务

    • 联系星主
    • 成长记录
    • 常见问题
    • 吐槽专区
  • 合作交流

    • 渠道合作
    • 课程入驻
    • 友情链接
author-avatar

GOLANG ROADMAP


首页
Go学习
  • Go学院

    • Go小课
    • Go小考
    • Go实战
    • 精品课
  • Go宝典

    • 在线宝典
    • B站精选
    • 推荐图书
    • 精品博文
  • Go开源

    • Go仓库
    • Go月刊
  • Go下载

    • 视频资源
    • 文档资源
Go求职
  • 求职服务

    • 内推互助
    • 求职助力
  • 求职刷题

    • 企业题库
    • 面试宝典
    • 求职面经
Go友会
  • 城市
  • 校园
推广返利 🤑
实验区
  • Go周边
消息
更多
  • 用户中心

    • 我的信息
    • 推广返利
  • 玩转星球

    • 星球介绍
    • 角色体系
    • 星主权益
  • 支持与服务

    • 联系星主
    • 成长记录
    • 常见问题
    • 吐槽专区
  • 合作交流

    • 渠道合作
    • 课程入驻
    • 友情链接
  • 宝典简介

  • gin系列目录

  • 杂谈

  • 爬虫系列目录

    • 爬取豆瓣电影 Top250
    • 爬取汽车之家 二手车产品库
    • 了解一下Golang的市场行情
  • gRPC系列目录

扫码订阅《 》或入驻星球,即可阅读文章!

爬取汽车之家 二手车产品库


煎鱼

项目地址:https://github.com/go-crawler/car-prices

# 目标

最近经常有人在耳边提起汽车之家,也好奇二手车在国内的价格是怎么样的,因此本次的目标站点是 汽车之家 (opens new window) 的二手车产品库

image

分析目标源:

  • 一页共24条
  • 含分页,但这个老产品库,在100页后会存在问题,因此我们爬取99页
  • 可以获取全部城市
  • 共可爬取 19w+ 数据

# 开始

爬取步骤

  • 获取全部的城市
  • 拼装全部城市URL入队列
  • 解析二手车页面结构
  • 下一页URL入队列
  • 循环拉取所有分页的二手车数据
  • 循环拉取队列中城市的二手车数据
  • 等待,确定队列中无新的 URL
  • 爬取的二手车数据入库

# 获取城市

image

通过页面查看,可发现在城市筛选区可得到全部的二手车城市列表,但是你仔细查阅代码。会发现它是JS加载进来的,城市也统一放在了一个变量中

image

有两种提取方法

  • 分析JS变量,提取出来
  • 直接将 areaJson 复制出来作为变量解析

在这里我们直接将其复制粘贴出来即可,因为这是比较少变动的值

# 获取分页

image

通过分析页面可以得知分页链接是有一定规律的,例如:/2sc/hangzhou/a0_0msdgscncgpi1ltocsp2exb4/,可以发现 sp%d,sp 后面为页码

按照常理,可以通过预测所有分页链接,推入队列后 go routine 一波 即可快速拉取

但是在这老产品库存在一个问题,在超过 100 页后,下一页永远是 101 页

image

因此我们采取比较传统的做法,通过拉取下一页的链接去访问,以便适应可能的分页链接改变; 100 页以后的分页展示也很奇怪,先忽视

# 获取二手车数据

页面结构较为固定,常规的清洗 HTML 即可

func GetCars(doc *goquery.Document) (cars []QcCar) {
    cityName := GetCityName(doc)
    doc.Find(".piclist ul li:not(.line)").Each(func(i int, selection *goquery.Selection) {
        title := selection.Find(".title a").Text()
        price := selection.Find(".detail .detail-r").Find(".colf8").Text()
        kilometer := selection.Find(".detail .detail-l").Find("p").Eq(0).Text()
        year := selection.Find(".detail .detail-l").Find("p").Eq(1).Text()
        kilometer = strings.Join(compileNumber.FindAllString(kilometer, -1), "")
        year = strings.Join(compileNumber.FindAllString(strings.TrimSpace(year), -1), "")
        priceS, _ := strconv.ParseFloat(price, 64)
        kilometerS, _ := strconv.ParseFloat(kilometer, 64)
        yearS, _ := strconv.Atoi(year)
        cars = append(cars, QcCar{
            CityName: cityName,
            Title: title,
            Price: priceS,
            Kilometer: kilometerS,
            Year: yearS,
        })
    })
    return cars
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

# 数据

image

image

在各城市的平均价格对比中,我们可以发现北上广深里的北京、上海、深圳都在榜单上,而近年势头较猛的杭州直接占领了榜首,且后几名都有一些距离

而其他城市大致都是梯级下降的趋势,看来一线城市的二手车也是不便宜了,当然这只是均价

image

我们可以看到价格和公里数的对比,上海、成都、郑州的等比差异是有点大,感觉有需求的话可以在价格和公里数上做一个衡量

image

这图有点儿有趣,粗略的统计了一下总公里数。在前几张图里,平均价格排名较高的统统没有出现在这里,反倒是呼和浩特、大庆、中山等出现在了榜首

是否侧面反应了一线城市的车辆更新换代较快,而较后的城市的车辆倒是换代较慢,公里数基本都杠杠的

image

通过对标题的分析,可以得知车辆产品库的命名基本都是品牌名称+自动/手动+XXXX款+属性,看标题就能知道个概况了

# 参考

# 爬虫项目地址

  • https://github.com/go-crawler/car-prices
  • 目标
  • 开始
  • 获取城市
  • 获取分页
  • 获取二手车数据
  • 数据
  • 参考
  • 爬虫项目地址